

Fig. 2. View of the crystal structure of $\left[\mathrm{NH}\left(\mathrm{CH}_{3}\right)_{3} \| \mathrm{CuCl}_{3}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ along a. The thermal ellipsoids correspond to the 20% probability surfaces.
bonds. The shorter coordinative bond at $\mathrm{Cu}(2)$ causes a lengthening of the $\mathrm{Cu}(2)-\mathrm{Cl}(1)$ single bond to $2 \cdot 3060(5) \AA$, compared with a $\mathrm{Cu}(1)-\mathrm{Cl}(2)$ bond length of $2 \cdot 2770$ (5) \AA. The $\mathrm{Cu}-\mathrm{O}$ bonds are longer than in $\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and increase the more the Cu atom deviates from the plane of the water molecule.

The Cl^{-}atom is involved in four hydrogen bonds with the $\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ chains (see deposition footnote). These hydrogen bonds are of intermediate strength and interconnect the $\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ chains along b (Fig. 2).

The cations are attached by very weak bifurcated hydrogen bonds to the $\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ chains. The bonding along consists of electrostatic interactions between the methyl H atoms and Cl atoms of the next $\mathrm{CuCl}_{3}^{-} .2 \mathrm{H}_{2} \mathrm{O}$ layers [shortest $\mathrm{H} \cdots \mathrm{Cl}$ contact: 2.85 (2) \AA].

We wish to thank Professor H. Fuess for his encouragement. This work was supported by the Deutsche Forschungsgemeinschaft.

References

Algra, H. A., de Jongh, L. J., Huiskamp, W. J. \& Carlin, R. L. (1977). Physica (Utrecht), 92B, 187-200.

Engberg, A. (1970). Acta Chem. Scand. 24, 3510-3526.
Enraf-Nonius (1982). Structure Determination Package. EnrafNonius, Delft.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Losee, D. B., McElearney, J. N., Siegel, A., Carlin, R. L., Kahn, A. A., Roux, J. P. \& James, W. J. (1972). Phys. Rev. B, 6, 4342-4348.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A 24, 351-359.
Ritter, M. B., Drumheller, J. E., Kite, T. M., Snively, L. O. \& Emerson, K. (1983). Phys. Rev. B,28, 4949-4954.

Acta Cryst. (1985). C41, 1299-1302

The Structure of α, α^{\prime}-Dithiobisformamidinium Chloride Pentachloro(thiourea)rhenate(IV) (I) and Bis(α, α^{\prime}-dithiobisformamidinium) Dichloride Hexachlororhenate(IV) Trihydrate (II)

By T. Lis and P. Starynowicz
Institute of Chemistry, The University, 50-383 Wroclaw, Poland

(Received 10 January 1985; accepted 10 May 1985)

Abstract

I) $\left[\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CSSC}\left(\mathrm{NH}_{2}\right)_{2}\right] \mathrm{Cl}\left[\mathrm{ReCl}_{5}\{\right.$ SC$\left.\left.\left(\mathrm{NH}_{2}\right)_{2}\right\}\right], \quad M_{r}=627 \cdot 3$, orthorhombic, Pbca, $a=$ 11.082 (7), $b=15.850$ (13), $c=19.864$ (14) $\AA, V=$ $3489 \AA^{3}, \quad Z=8, \quad D_{m}=2.38, \quad D_{x}=2.39 \mathrm{Mg} \mathrm{m}^{-3}$, $F(000)=2376, \quad \mu($ Mo $K \alpha, \quad \lambda=0.71069 \AA)$ $=8.61 \mathrm{~mm}^{-1}$, room temperature, final $R=0.035$ and $w R=0.033$ for 2257 non-zero reflexions. (II) $\left[\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CSSC}\left(\mathrm{NH}_{2}\right)_{2}\right]_{2} \mathrm{Cl}_{2}\left[\mathrm{ReCl}_{6}\right] .3 \mathrm{H}_{2} \mathrm{O}, \quad M_{r}=$ 828.4, orthorhombic, Amam ($D_{2 h}^{17}$), $a=16.768$ (6), $b=13.672(8), \quad c=11.348(5) \AA, \quad V=2601.6 \AA^{3}$, $Z=4, D_{m}=2 \cdot 10, D_{x}=2 \cdot 11 \mathrm{Mg} \mathrm{m}^{-3}, F(000)=1604$, $\mu($ Mo $K \alpha)=6.09 \mathrm{~mm}^{-1}$, room temperature, final R $=0.031$ and $w R=0.027$ for 1988 non-zero reflexions. The dithiobisformamidinium cations have the normal configuration and dimensions with CSSC torsion angles of 94.4 (6) and $96 \cdot 1$ (4) ${ }^{\circ}$ for (I) and (II) respectively.

The $\left|\mathrm{ReCl}_{6}\right|^{2-}$ anion has crystallographic point symmetry $m m\left(C_{2 v}\right)$ and the average $\mathrm{Re}-\mathrm{Cl}$ distance is 2.361 (2) \AA. The $\mathrm{Re}-\mathrm{Cl}$ distances in the $\mid \mathrm{ReCl}_{5}{ }^{-}$ $\left.\left\{\mathrm{SC}\left(\mathrm{NH}_{2}\right)_{3}\right\}\right]^{-}$anion are in the range 2.331 (3)2.373 (3) \AA and the $\mathrm{Re}-\mathrm{S}$ bond length is 2.399 (4) \AA.

Introduction. This investigation was undertaken as a part of our study on crystal structures of complexes isolated in the reaction of thiourea with ReO_{4}^{-}and $\mathrm{ReCl}_{6}{ }^{2-}$ anions in HCl solution.

Experimental. The yellow platy crystals of (I) were obtained as reported earlier (Lis, 1979). The compound (II) may be obtained if a solution of thiourea and $\mathrm{K}_{2} \mathrm{ReCl}_{6}$ in dilute HCl is exposed to air. After some days at the top of the solution yellow crystals are
(c) 1985 International Union of Crystallography
formed as large needles. (It was noticed that the presence of $\left[\mathrm{ReCl}_{6}\right]^{2-}$ and the access of air were essential.) D_{m} measured pycnometrically in 1,2dibromoethane/ CHBr_{3} for (I) and 1,2-dibromoethane/ CCl_{4} for (II). Systematic absences on Weissenberg photographs uniquely indicated the space group for (I). For (II) two space groups, Amam or Ama2, were possible. A parallelepiped $0.16 \times 0.03 \times 0.4 \mathrm{~mm}$ for (I) and a cube 0.25 mm on edge for (II) were cut from large crystals. Syntex $P 2_{1}$ diffractometer, Mo $K \alpha$ radiation for lattice parameters [15 reflexions, $15<$ $2 \theta<24^{\circ}$ for (I) and $14<2 \theta<23^{\circ}$ for (II) and intensity measurements at room temperature (temperature not measured); $2 \theta-\omega$ scan technique for both crystals. 2888 intensities measured only for reflexions above background and below $\theta=30^{\circ}$ for (I) ($h 0$ to 15 , $k 0$ to $22, l 0$ to 27); 2752 intensities measured below $\theta=35^{\circ}$ for (II) ($h 0$ to $22, k 0$ to $19, l 1$ to 16). After each group of 50 reflexions two standards were measured, variation 5%. Most of the calculations performed on a NOVA 1200 computer with locally modified XTL/XTLE (Syntex, 1976) programs. Neutral-atom scattering factors from International Tables for X-ray Crystallography (1974); real and imaginary components of anomalous dispersion included for all non-H atoms. Both structures solved by the heavy-atom method. The Re atoms were found from Patterson maps and the centrosymmetric space group Amam was assumed in the case of (II); all other non-H atoms from difference maps. In each structure, refinement based on $F(\mathrm{Re}, \mathrm{Cl}, \mathrm{S}, \mathrm{C}, \mathrm{N}, \mathrm{O}$ anisotropic, N -bonded H atoms included in geometrically calculated positions, O -bonded H atoms from difference map and not refined) for reflexions with $I>3 \sigma(I) ; w=1 / \sigma^{2}\left(F_{o}\right)$; $(\Delta / \sigma)_{\max }=0 \cdot 01$. For (I) an absorption correction following the DIFABS procedure (Walker \& Stuart, 1983) was applied to isotropically refined data, for (II) empirical absorption corrections from φ-scan data. No corrections for secondary extinction. For (I), $S=1 \cdot 59$, for (II), $1 \cdot 65 ;(\Delta \rho)_{\text {max }}$ in final difference syntheses $1 \cdot 1$ and $1.4 \mathrm{e} \AA^{-3}$ for (I) and (II), respectively. The final atomic parameters for (I) and (II) are given in Tables 1 and 2 respectively.*

Discussion. Crystals of (I) consist of dithiobisformamidinium dications, pentachloro(thiourea)rhenate(IV) monoanions and Cl^{-}anions. The selected bond lengths and angles for (I) are listed in Table 3. Crystals of (II) comprise dithiobisformamidinium dications, hexachlororhenate(IV) dianions, Cl^{-}anions and water molecules.

[^0]Table 1. Final atom coordinates and equivalent isotropic thermal parameters of compound (I)

$B_{\text {eq }}=\frac{1}{3}\left(B_{11}+B_{22}+B_{33}\right)$.				
	x	y	z	$B_{\text {eq }}\left(\AA^{2}\right)$
Re	$0 \cdot 19762$ (3)	0.15761 (3)	$0 \cdot 11403$ (2)	$2 \cdot 22$ (2)
$\mathrm{Cl}(1)$	0.0498 (3)	0.1682 (2)	0.1985 (2)	$3 \cdot 26$ (21)
$\mathrm{Cl}(2)$	0.3173 (3)	0.2573 (2)	$0 \cdot 1695$ (2)	$3 \cdot 35$ (21)
$\mathrm{Cl}(3)$	0.3415 (3)	0.1430 (2)	0.0292 (2)	3.72 (24)
$\mathrm{Cl}(4)$	0.2892 (3)	0.0484 (2)	0.1746 (2)	3.71 (24)
$\mathrm{Cl}(5)$	0.0734 (3)	0.0599 (2)	0.0559 (2)	3.82 (26)
$\mathrm{Cl}(6)$	0.4031 (3)	0.4620 (3)	0.3522 (2)	4.24 (26)
S(1)	$0 \cdot 1150$ (3)	0.3581 (2)	0.3808 (2)	3.48 (23)
S(2)	0.2573 (3)	0.2827 (3)	0.3560 (2)	$3 \cdot 20$ (21)
S(3)	0.0911 (3)	$0 \cdot 2660$ (3)	0.0543 (2)	4.55 (30)
C(1)	0.0600 (10)	0.3924 (7)	0.3027 (6)	3.0 (10)
C(2)	$0 \cdot 1930$ (10)	0.1812 (7)	0.3543 (5)	$2 \cdot 7$ (8)
C(3)	$0 \cdot 1803$ (13)	0.3551 (8)	0.0366 (6)	4.2 (12)
N(1)	0.0979 (9)	$0 \cdot 3665$ (6)	0.2449 (5)	$3 \cdot 7$ (9)
$\mathrm{N}(2)$	-0.0221 (10)	0.4510 (7)	$0 \cdot 3053$ (5)	4.7 (10)
N(3)	0.0802 (8)	$0 \cdot 1650$ (7)	0.3690 (4)	3.3 (8)
N(4)	0.2691 (9)	$0 \cdot 1210$ (7)	0.3393 (5)	4.4 (10)
N(5)	0.2965 (10)	0.3474 (8)	0.0155 (5)	$5 \cdot 1$ (10)
N(6)	$0 \cdot 1279$ (10)	0.4288 (7)	0.0399 (6)	4.6 (10)

Table 2. Final atom coordinates and equivalent isotropic thermal parameters of compound (II)

$B_{\text {eq }}=\frac{1}{3}\left(B_{11}+B_{22}+B_{33}\right)$.				
	x	y	z	$B_{\text {cq }}\left(\AA^{2}\right)$
Re	$0 \cdot 25$	0.15494 (2)	0	1.50 (2)
$\mathrm{Cl}(1)$	$0 \cdot 15003$ (8)	0.27625 (9)	0	2.39 (8)
$\mathrm{Cl}(2)$	$0 \cdot 15186$ (8)	$0 \cdot 03092$ (9)	0	2.80 (9)
$\mathrm{Cl}(3)$	0.25	$0 \cdot 15566$ (11)	$0 \cdot 20813$ (10)	2.85 (9)
$\mathrm{Cl}(4)$	0.08221 (9)	0.17509 (9)	0.5	2.96 (9)
S	0.05663 (6)	0.47478 (7)	$0 \cdot 18266$ (8)	2.51 (6)
C	0.0522 (3)	0.3766 (3)	$0 \cdot 2845$ (3)	$2 \cdot 3$ (3)
N(1)	0.1201 (3)	0.3306 (3)	0.2991 (3)	2.9 (3)
$\mathrm{N}(2)$	-0.0136 (3)	0.3516 (3)	0.3386 (3)	$3 \cdot 3$ (3)
$\mathrm{O}(1)$	0.25	0.4323 (4)	$0 \cdot 2050$ (4)	3.4 (4)
$\mathrm{O}(2)$	$0 \cdot 25$	0.5489 (5)	0	4.4 (6)

Table 3. Selected intramolecular distances (\AA) and angles $\left({ }^{\circ}\right)$ in compound (I)

$\mathrm{C}(1)-\mathrm{N}(1)$	1.290 (14)	$\mathrm{C}(1)-\mathrm{N}(2)$	1.301 (15)
$\mathrm{C}(2)-\mathrm{N}(3)$	$1 \cdot 309$ (14)	$\mathrm{C}(2)-\mathrm{N}(4)$	1.308 (14)
$\mathrm{C}(3)-\mathrm{N}(5)$	1.360 (17)	$\mathrm{C}(3)-\mathrm{N}(6)$	1.306 (17)
$\mathrm{C}(3)-\mathrm{S}(3)$	1.758 (13)	$\mathrm{S}(3)-\mathrm{Re}$	$2 \cdot 399$ (4)
$\mathrm{Re}-\mathrm{Cl}(1)$	2.350 (2)	$\mathrm{Re}-\mathrm{Cl}(2)$	$2 \cdot 338$ (3)
$\mathrm{Re}-\mathrm{Cl}(3)$	$2 \cdot 331$ (3)	$\mathrm{Re}-\mathrm{Cl}(4)$	$2 \cdot 340$ (3)
$\mathrm{Re}-\mathrm{Cl}(5)$	$2 \cdot 373$ (3)	$\mathrm{Cl}(1)-\mathrm{Re}-\mathrm{Cl}(2)$	$90 \cdot 6$ (1)
$\mathrm{Cl}(1)-\mathrm{Re}-\mathrm{Cl}(3)$	178.1 (1)	$\mathrm{Cl}(1)-\mathrm{Re}-\mathrm{Cl}(4)$	89.3 (1)
$\mathrm{Cl}(1)-\mathrm{Re}-\mathrm{Cl}(5)$	89.4 (1)	$\mathrm{Cl}(1)-\mathrm{Re}-\mathrm{S}(3)$	87.6 (2)
$\mathrm{Cl}(2)-\mathrm{Re}-\mathrm{Cl}(3)$	91.1 (1)	$\mathrm{Cl}(2)-\mathrm{Re}-\mathrm{Cl}(4)$	90.7 (1)
$\mathrm{Cl}(2)-\mathrm{Re}-\mathrm{Cl}(5)$	$178 \cdot 2$ (1)	$\mathrm{Cl}(2)-\mathrm{Re}-\mathrm{S}(3)$	91.6 (2)
$\mathrm{Cl}(3)-\mathrm{Re}-\mathrm{Cl}(4)$	$90 \cdot 1$ (1)	$\mathrm{Cl}(3)-\mathrm{Re}-\mathrm{Cl}(5)$	88.9 (1)
$\mathrm{Cl}(3)-\mathrm{Re}-\mathrm{S}(3)$	92.9 (2)	$\mathrm{Cl}(4)-\mathrm{Re}-\mathrm{Cl}(5)$	91.1 (1)
$\mathrm{Cl}(4)-\mathrm{Re}-\mathrm{S}(3)$	$176 \cdot 2$ (2)	$\mathrm{Cl}(5)-\mathrm{Re}-\mathrm{S}(3)$	86.6 (2)
$\mathrm{Re}-\mathrm{S}(3)-\mathrm{C}(3)$	113.4 (5)	$\mathrm{S}(3)-\mathrm{C}(3)-\mathrm{N}(5)$	121.5 (10)
$\mathrm{S}(3)-\mathrm{C}(3)-\mathrm{N}(6)$	117.2 (10)	$\mathrm{N}(5)-\mathrm{C}(3)-\mathrm{N}(6)$	121.1(12)
$\mathrm{S}(1)-\mathrm{C}(1)-\mathrm{N}(1)$	125.1 (9)	$\mathrm{S}(2)-\mathrm{C}(2)-\mathrm{N}(3)$	124.1 (8)
$\mathrm{S}(1)-\mathrm{C}(1)-\mathrm{N}(2)$	$115 \cdot 5$ (9)	$\mathrm{S}(2)-\mathrm{C}(2)-\mathrm{N}(4)$	114.2 (8)
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{N}(2)$	119.3 (11)	$\mathrm{N}(3)-\mathrm{C}(2)-\mathrm{N}(4)$	121.6 (10)

In both crystals the dithiobisformamidinium dications [ORTEP drawings (Johnson, 1976), atomnumbering scheme, and some of the bond distances and angles are shown on Fig. 1] have similar dimensions and conformation. In crystal (II) the dications possess crystallographically required twofold symmetry, which is not the case for (I). All bond lengths and angles are within the range of accepted values. The thiourea parts of the cations are planar. The CSSC torsion angles of 94.4 (6) ${ }^{\circ}$ for (I) and 96.1 (4) ${ }^{\circ}$ for (II) are similar and lie between extreme values found in other structures for this species (Jameson, Blazsò, Seferiadis \& Oswald, 1982 and references therein). The intramolecular contacts between N and S atoms (Table 4) may be either dipole interactions, or (more likely) intramolecular hydrogen bonds (Jameson et al., 1982). In (II) the SSCN torsion angles are, within experimental error, equal to 0 and 180°; in (I) the $\mathrm{S}(1)-\mathrm{S}(2)-\mathrm{C}-\mathrm{N}$ torsion angles of $-2.3(8)$ and $-179.9(9)^{\circ}$ and the $\mathrm{S}(2)-\mathrm{S}(1)-\mathrm{C}-\mathrm{N}$ torsion angles of $6.0(11)$ and

Fig. 1. Molecular diagrams of the dithiobisformamidinium dications. (a) Dication of (I) showing the numbering scheme, (b) view of dication of (II) along the twofold axis; with bond distances (\AA) and angles $\left({ }^{\circ}\right)$.
$-171 \cdot 1(11)^{\circ}$ are within the range found for the dithiobisformamidinium dication (for a short review, see Jameson et al., 1982).
In the $\left[\mathrm{ReCl}_{5}(\text { thiourea) }]^{-}\right.$cation (the structure of which is shown in Fig. 2) the six atoms bonded to Re form a distorted octahedron. The $\mathrm{Re}-\mathrm{Cl}$ distances range from 2.331 (3) to 2.373 (3) \AA and are similar to those found in other rhenium(IV) complexes (Lis, 1980). The Re-S distance, 2.399 (4) \AA, is longer than the corresponding distances in $\left[\mathrm{ReO}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Cl}_{2} \mathrm{tu}_{2}\right] \mathrm{Cl}$ [2.356 (5) and $2.340(4) \AA$] and in $\mathrm{ReO}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Cl}_{3} \mathrm{tu}$ [2.311 (7) \AA] (Lis, 1977). The thiourea molecule is planar and forms one intramolecular hydrogen bond between $\mathrm{N}(5)$ and $\mathrm{Cl}(3)-$ see Fig. 2 and Table 4.

Table 4. Geometry of the probable hydrogen bonds for compounds (I) and (II)

$X-\mathrm{H} \cdots Y$	$X \cdots Y$	H $\cdots Y$	$\angle X-H \cdots Y$
Compound (I)			
$\mathrm{N}(1)-\mathrm{H}(1) \cdots \mathrm{Cl}\left(6^{1}\right)$	3.266 (10) \AA	2.36A	150°
$\mathrm{N}(1)-\mathrm{H}(11) \cdots \mathrm{Cl}(2)$	$3 \cdot 340$ (10)	2.46	146
$\mathrm{N}(1)-\mathrm{H}(11) \cdots \mathrm{S}(2)$	$3 \cdot 124$ (10)	2.58	114
$\mathrm{N}(2)-\mathrm{H}(2) \cdots \mathrm{Cl}\left(6^{\prime}\right)$	$3 \cdot 241$ (10)	2.33	151
$\mathrm{N}(2)-\mathrm{H}(21) \cdots \mathrm{Cl}\left(5^{11}\right)$	$3 \cdot 303$ (10)	2.34	162
$\mathrm{N}(3)-\mathrm{H}(3) \cdots \mathrm{Cl}\left(6^{\text {III }}\right)$	3.241 (10)	2.36	147
$\mathrm{N}(3)-\mathrm{H}(31) \cdots \mathrm{Cl}\left(2^{1}\right)$	3.348 (10)	$2 \cdot 62$	130
$\mathrm{N}(3)-\mathrm{H}(31) \cdots \mathrm{S}(1)$	3.092 (10)	2.53	116
$\mathrm{N}(4)-\mathrm{H}(4) \cdots \mathrm{Cl}\left(6^{\text {III }}\right.$)	$3 \cdot 172$ (10)	$2 \cdot 26$	151
$\mathrm{N}(4)-\mathrm{H}(41) \cdots \mathrm{Cl}\left(1^{\text {lV }}\right.$)	3.286 (10)	2.29	176
$\mathrm{N}(5)-\mathrm{H}(51) \cdots \mathrm{Cl}(3)$	3.289 (12)	2.37	153
$\mathrm{N}(6)-\mathrm{H}(6) \cdots \mathrm{Cl}\left(3^{v}\right)$	3.420 (11)	2.57	142
$\mathrm{N}(6)-\mathrm{H}(61) \cdots \mathrm{Cl}\left(6^{1}\right)$	$3 \cdot 328$ (11)	2.48	142

Symmetry code: (i) $x-\frac{1}{2}, y, \frac{1}{2}-z$; (ii) $-x, \frac{1}{2}+y, \frac{1}{2}-z$; (iii) $\frac{1}{2}-x, y-\frac{1}{2}, z$; (iv) $\frac{1}{2}+x, y, \frac{1}{2}-z$; (v) $\frac{1}{2}-x, \frac{1}{2}+y, z$.

Compound (II)			
$\mathrm{N}(1)-\mathrm{H}(11) \cdots \mathrm{Cl}(4)$	$3.181(3)$	2.24	157
$\mathrm{~N}(1)-\mathrm{H}(12) \cdots \mathrm{O}(1)$	$2.796(4)$	1.85	158
$\mathrm{~N}(2)-\mathrm{H}(21) \cdots \mathrm{Cl}(4)$	$3.429(4)$	2.57	143
$\mathrm{~N}(2)-\mathrm{H}(22) \cdots \mathrm{S}^{\mathrm{I}}$	$3.048(4)$	2.48	116
$\mathrm{O}(1)-\mathrm{H}(1) \cdots \mathrm{O}(2)$	$2.819(5)$	2.23	118
$\mathrm{O}(1)-\mathrm{H}(10) \cdots \mathrm{Cl}\left(3^{\text {II }}\right)$	$3.209(5)$	2.43	151
$\mathrm{O}(2)-\mathrm{H}(2) \cdots \mathrm{Cl}\left(4^{\text {III }}\right)$	$3.301(4)$	2.33	168

Symmetry code: (i) $-x, 1-y, z$; (ii) $\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z$; (iii) $x, \frac{1}{2}+y, \frac{1}{2}-z$.

Fig. 2. An ORTEP (Johnson, 1976) view of the $\left[\mathrm{ReCl}_{5} \text { (thiourea) }\right]^{-}$ ion. The dotted line denotes the intramolecular hydrogen bond.

Fig. 3. Crystal packing of structure (I).

The hexachlororhenate(IV) dianion, being placed in the $m m\left(C_{2 v}\right)$ special position, retains in general its internal O_{h} symmetry. One mirror plane is through four Cl atoms whereas the other one is placed across the $\mathrm{Cl}-\mathrm{Re}-\mathrm{Cl}$ dihedral angles. The $\mathrm{Re}-\mathrm{Cl}$ distances are equal within the experimental precision and the average $\mathrm{Re}-\mathrm{Cl}$ distance of 2.361 (2) \AA agrees with that of 2.361 (3) \AA found in $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{ReCl}_{6}$ (Lisher, Cowlam \& Gillott, 1979) and that of 2.353 (4) \AA found in $\mathrm{K}_{2} \mathrm{ReCl}_{6}$ (Grundy \& Brown, 1970). However, the angles are slightly displaced from 90°, the most severe deviation being $1.7(1)^{\circ}$ for $\mathrm{Cl}(2)-\mathrm{Re}-\mathrm{Cl}\left(2^{\prime}\right)$.

The crystal packing is shown in Figs. 3 and 4 for (I) and (II), respectively. The structure in both crystals is held together by a three-dimensional hydrogen-bond network and electrostatic interactions. (The hydrogen bonds for both crystals are listed in Table 4.) The packing of the Cl^{-}ions is similar in both crystals. Each chloride ion participates in five hydrogen bonds

Fig. 4. Unit-cell diagram, illustrating intermolecular hydrogen bonds (dotted lines) for structure (II). (Oc out of the page.)
spanning irregular polyhedra. All H atoms from water molecules of (II) are used in the hydrogen bonds.

References

Grundy, H. D. \& Brown, I. D. (1970). Can. J. Chem. 48, 1151-1154.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.
Jameson, G. B., Blazsò, E., Seferiadis, N. \& Oswald, H. R. (1982). Acta Cryst. B38, 2272-2274.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee.
Lis, T. (1977). Acta Cryst. B33, 944-946.
Lis, T. (1979). Acta Cryst. B35, 3041-3044.
Lis, T. (1980). Acta Cryst. B36, 2782-2784.
Lisher, E. J., Cowlam, N. \& Gillott, L. (1979). Acta Cryst. B35, 1033-1038.
Syntex (1976). XTL/XTLE Structure Determination System. Syntex Analytical Instruments, Cupertino, California.
Walker, N. \& Stuart, D. (1983). Acta Cryst. A39, 158-166.

Structure d'un Complexe Binucléaire du Nitrate d'Uranyle et du N, N-Diméthyl-formamide: μ-Peroxo-bis[bis(N, N-diméthyl-formamide)nitratodioxouranium(VI)], $\left[\left(\mathrm{UO}_{2}\right)_{2}\left(\mathrm{NO}_{3}\right)_{2} \mathrm{O}_{2}\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}\right)_{4}\right]$

Par P. Charpin, G. Folcher, M. Lance, M. Nierlich et D. Vigner
IRDI/DESICP/DPC-SCM (CNRS LA 331), CEN-SACLAY, 91191 Gif-sur-Yvette CEDEX, France
(Reçu le 19 octobre 1984, accepté le 16 mai 1985)

Abstract. $M_{r}=988.45$, triclinic, $P \overline{1}, a=8.564$ (2), $b=8.990$ (4),$\quad c=20.063$ (4) $\AA, \quad \alpha=75.50$ (2), $\quad \beta=$ 79.13 (2), $\gamma=65.58$ (3) ${ }^{\circ}, V=1355.4 \AA^{3}, Z=2, D_{x}$ $=2.423 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda($ (Мо $K \alpha)=0.71073 \AA, \mu($ (Мо K $\alpha)=$ $113.63 \mathrm{~cm}^{-1}, F(000)=454, T=295 \mathrm{~K}, R_{F}=0.033$ for 2029 independent reflexions $[I>3 \sigma(I)]$. The eight-
coordinated uranium lies at the centre of a distorted hexagonal bipyramid. One oxo group links two polyhedra into a dimer. The remaining four equatorial O atoms in both bipyramids are from one nitrate group and two dmf molecules. The formation of the peroxo complex is discussed.

[^0]: * Lists of structure factors, anisotropic thermal parameters and H -atom parameters for (I) and (II) have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 42237 (28 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

